站长资源数据库

怎样正确创建MySQL索引的方法详解

整理:jimmy2025/1/15浏览2
简介索引类似大学图书馆建书目索引,可以提高数据检索的效率,降低数据库的IO成本。MySQL在300万条记录左右性能开始逐渐下降,虽然官方文档说500~800w记录,所以大数据量建立索引是非常有必要的。MySQL提供了Explain,用于显示SQL执行的详细信息,可以进行索引的优化。什么是索引?MyS

索引类似大学图书馆建书目索引,可以提高数据检索的效率,降低数据库的IO成本。MySQL在300万条记录左右性能开始逐渐下降,虽然官方文档说500~800w记录,所以大数据量建立索引是非常有必要的。MySQL提供了Explain,用于显示SQL执行的详细信息,可以进行索引的优化。

什么是索引?

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。我们可以简单理解为:快速查找排好序的一种数据结构。Mysql索引主要有两种结构:B+Tree索引和Hash索引。我们平常所说的索引,如果没有特别指明,一般都是指B树结构组织的索引(B+Tree索引)。索引如图所示:

怎样正确创建MySQL索引的方法详解

最外层浅蓝色磁盘块1里有数据17、35(深蓝色)和指针P1、P2、P3(黄色)。P1指针表示小于17的磁盘块,P2是在17-35之间,P3指向大于35的磁盘块。真实数据存在于子叶节点也就是最底下的一层3、5、9、10、13……非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35。

查找过程:例如搜索28数据项,首先加载磁盘块1到内存中,发生一次I/O,用二分查找确定在P2指针。接着发现28在26和30之间,通过P2指针的地址加载磁盘块3到内存,发生第二次I/O。用同样的方式找到磁盘块8,发生第三次I/O。

真实的情况是,上面3层的B+Tree可以表示上百万的数据,上百万的数据只发生了三次I/O而不是上百万次I/O,时间提升是巨大的。

数据表索引可以提高数据的检索效率,也可以降低数据库的IO成本,并且索引还可以降低数据库的排序成本。排序分组操作主要消耗的就是CPU资源和内存,所以能够在排序分组操作中好好的利用索引将会极大地降低CPU资源的消耗。下面我们将简单的分析一下怎样正确创建MySQL数据索引。

怎样判断是否需要创建索引?

1、某些字段需要频繁用作查询条件时需要为它建立索引

这个应该都知道,什么样才是频繁呢?综合分析你执行的所有SQL语句。最好将他们一个个都列出来。然后分析,发现其中有些字段在大部分的SQL语句查询时候都会用到,那么就果断为他建立索引。

2、唯一性太差的字段不适合建立索引

什么是唯一性太差的字段?如状态字段、类型字段。那些只存储固定几个值的字段,例如用户登录状态、消息的status等。这个涉及到了索引扫描的特性。例如:通过索引查找键值为A和B的某些数据,通过A找到某条相符合的数据,这条数据在X页上面,然后继续扫描,又发现符合A的数据出现在了Y页上面,那么存储引擎就会丢弃X页面的数据,然后存储Y页面上的数据,一直到查找完所有对应A的数据,然后查找B字段,发现X页面上面又有对应B字段的数据,那么他就会再次扫描X页面,等于X页面就会被扫描2次甚至多次。以此类推,所以同一个数据页可能会被多次重复的读取,丢弃,在读取,这无疑给存储引擎极大地增加了IO的负担。

3、更新太频繁地字段不适合创建索引

当你为某个字段创建索引时候,如果再次更新这个字段数据时,数据库就会自动更新他的索引,所以当这个字段更新太频繁地时候那么就会不断的更新索引,性能的影响可想而知。大概被检索几十次才会更新一次的字段才比较符合建立索引的规范。而如果一个字段同一个时间段内被更新多次,那么果断不能为他建立索引。

4、不会出现在where条件中的字段不该建立索引

这个其实没什么好说的,不会用作查询条件的字段建立了索引也没用。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接